The Lie Module of the Symmetric Group
نویسندگان
چکیده
We provide an upper bound of the dimension of the maximal projective submodule of the Lie module of the symmetric group of n letters in prime characteristic p, where n = pk with p k.
منابع مشابه
Flag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type
Let $G$ be an automorphism group of a $2$-$(v,k,4)$ symmetric design $mathcal D$. In this paper, we prove that if $G$ is flag-transitive point-primitive, then the socle of $G$ cannot be an exceptional group of Lie type.
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملThe Non-projective Part of the Lie Module for the Symmetric Group
The Lie module of the group algebra FSn of the symmetric group is known to be not projective if and only if the characteristic p of F divides n. We show that in this case its nonprojective summands belong to the principal block of FSn. Let V be a vector space of dimension m over F , and let L(V ) be the n-th homogeneous part of the free Lie algebra on V ; this is a polynomial representation of ...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملOn generalized reduced representations of restricted Lie superalgebras in prime characteristic
Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...
متن کامل